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Abstract
We extract the anisotropy of the solid–liquid interfacial energy of small crystals using phase
field crystal simulations. The results indicate a strong dependence of the interfacial energy on
the parameters in the phase field crystal model determining the position in the solid–liquid
coexistence region in the phase diagram. Furthermore a size dependence of the anisotropy is
shown if the crystal shape is reduced to the size of a nucleus.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The solid–liquid interfacial energy γ is one of the fundamental
material properties required in mesoscopic models to describe
growth morphologies resulting from crystal growth from the
melt. Especially if smaller and smaller length scales become of
interest, the importance of the interface is increased compared
with phenomena in the bulk phases. Such interfaces play a
key role in many practically important physical processes, like
homogeneous and heterogeneous nucleation, crystal growth,
dendritic solidification, surface roughening, thermal faceting
and self-organization of nanostructures. Thus a quantitative
knowledge of γ is necessary in order to model these processes
not only qualitatively. Due to significant challenges associated
with direct experimental measurements, various methods have
been proposed for computing γ using molecular dynamics; see
e.g. [1] for the capillary fluctuation method. Here a quasi-one-
dimensional interface is analysed for various orientations and
then used to fit an analytic formula describing the orientation
dependence of γ . The method has been applied to compute
solid–liquid interfacial energies for various materials and the
energies obtained are already used in mesoscopic models,
e.g. for dendritic solidification [2]. However, the method
is costly and only applicable for smooth energies, which
rules out functions with cusps. Cusps in the interfacial
energy correspond to facets in the interface, which is a
common feature for many materials. We propose an approach
for extracting γ using classical density functional theory
of freezing. Approximations of a dynamic version of the
theory, so called phase field crystal models, allow efficient
atomic simulations on diffusive timescales, which can be

used to compute equilibrium shapes from which γ can be
reconstructed.

The outline of the paper is as follows. We first introduce
the phase field crystal model and describe a numerical
approach for solving the equation efficiently. The algorithm is
used to compute equilibrium crystal shapes for various points
in the solid–liquid coexistence region of the phase diagram.
The density profile and the diffuse interface between the crystal
and liquid is analysed and the extracted equilibrium shape used
to fit an analytic formula for γ . The last investigation concerns
the size dependence of γ if the crystal size reaches a nanometre
length scale.

2. Phase field crystal modelling

The phase field crystal model is now widely used in order
to predict crystal nucleation and growth on atomic length
scales. The PFC model was first developed in [3] and then
subsequently applied to many scenarios like interfaces [4],
polycrystalline pattern formation [5, 6], commensurate–
incommensurate transitions [7], edge dislocations [8], grain
boundary pre-melting [9] and colloidal solidification [10]. The
model resolves the atomic scale density wave structure of
a polycrystalline material and describes the defect-mediated
evolution of this structure on timescales orders of magnitude
larger than those of molecular dynamic simulations. In its
simplest form the phase field crystal model results from the
energy

F[ψ] =
∫
�

−|∇ψ|2 + 1
2 (�ψ)

2 + f (ψ) dx
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Figure 1. Computed phase diagram of the phase field crystal model.
The shaded region is the coexistence region calculated using the
one-mode approximation [3]. Big points (1)–(5) correspond to the
parameters used in the simulations (1): (ε; ψ̄) = (−0.25;−0.322),
(2): (−0.289;−0.345), (3): (−0.328;−0.370),
(4): (−0.367;−0.395), (5): (−0.406;−0.420). The small points are
ψ̄ in the ordered and homogeneous phase.

with f (ψ) = 1
2 (1 − ε)ψ2 + 1

4ψ
4, ψ the number density

and ε a parameter determining the approximation of the liquid
structure factor [3]. Comparing the energy with a classical
phase field type energy, e.g.

∫
�
δ
2 |∇φ|2 + 1

δ
g(φ) dx for an

order parameter φ, with δ a length scale determining the width
of a diffuse interface and g(φ) a double-well potential, the
difference is in the sign of the gradient term and the additional
higher order term. The negative sign in the gradient term
favours changes in ψ , whereas the higher order term favours
suppression of such changes. The competition between the
two terms introduces a fixed length scale for which the energy
will be minimized. This length scale is used to model the
periodicity of a crystal lattice. The formulation used here
favours a bcc ordering in three dimensions and a hexagonal
close packed structure in two dimensions. The dynamic laws
constructed to minimize the free energy are the non-conserved
Swift–Hohenberg equation (L2-gradient flow)

∂tψ = −δF[ψ]
δψ

and the conserved phase field crystal model (H −1-gradient
flow)

∂tψ = ∇ ·
(

∇ δF[ψ]
δψ

)
,

with the variational derivative given by

δF[ψ]
δψ

= �2ψ + 2�ψ + f ′(ψ).

Although this formulation is phenomenological, the model
can be derived starting from a Smoluchowski equation via
dynamic density functional theory using various approxima-
tions [11, 12, 10] and thus provides also a quantitative atomic
theory which operates on diffusive timescales.

This leads to a non-constant mobility (ψ + 1) in the phase
field crystal model

∂tψ = ∇ · ((ψ + 1)∇(�2ψ + 2�ψ + f ′(ψ)))

and we write the non-linear sixth-order equation as a system of
three second-order equations

∂tψ = ∇ · ((ψ + 1)∇u)

u = �v + 2�ψ + f ′(ψ)

v = �ψ

for which a stable semi-implicit finite element discretization is
introduced in [12]. We use this approach but with higher order
elements and an adaptive time-stepping strategy, which allows
us to use large time steps if the system is close to equilibrium.
The algorithm is implemented in the adaptive finite element
toolbox AMDiS [13].

3. Using the phase field crystal model to compute
equilibrium shapes

In [5] the phase field crystal model is used to reproduce
the magnitude and anisotropy of the interfacial free energy
of Fe using amplitude equations following from a small ε
analysis of the phase field crystal equation. Molecular dynamic
simulations with an inter-atomic potential for Fe are used to
compute the free parameters in the phase field crystal model.
The results obtained are in nice agreement with previous
molecular dynamic calculations for the interfacial energy.
In [14] a similar approach is used, in which the amplitude
equations are constructed directly from density functional
theory not using the approximations made in the phase field
crystal model.

We will here not focus on a specific material but describe
a general approach for computing equilibrium shapes using
the phase field crystal model from which we reconstruct γ .
Furthermore we determine the dependence of the anisotropy
in the interfacial free energy on the parameter ε. ε and the
average density ψ̄ are the only remaining free parameters in
the phase field crystal energy and determine the position in
the phase diagram, which can be computed using a one-mode
approximation; see figure 1.

All parameter sets are within the coexistence region of
liquid and solid, which allows us to eliminate kinetic effects in
the computation of the equilibrium shapes. Also the mobility
can be set to a constant, as we are only interested in equilibrium
states. We will use a two-dimensional setting in which an
initial island is nucleated in the centre of the liquid and
grows until it reaches its equilibrium. We therefore start with
a homogeneous liquid phase with initial fluctuations. The
fluctuation is chosen with respect to the lattice structure of the
expected crystal. All boundaries are set to no flux conditions.
Detailed simulations have been performed to eliminate the
effects of the computational domain and the underlying mesh
on the equilibrium shape. Due to the symmetry only 1/12
of the domain is computed and only 1/4 of the computed
equilibrium crystal is shown in figure 2, ranging from a circular
shape for parameter set (1) to a fully hexagonal shape for
parameter set (5).

For a more quantitative analysis of the equilibrium we
need to reconstruct the shape from the density profile. But due
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1 2 3 4 5

Figure 2. Computed density fields for equilibrium shape for parameter sets (1)–(5) using a constant mobility.

Figure 3. Left: extracted envelope of the equilibrium shapes in figure 2. The envelopes are normed to the same radial distance of the facet.
Right: computed aspect ratio of the radial distance for θ = 0 ([10] orientation) and θ = π

6 ([11] orientation), with error bars resulting from
the uncertainty in determining the equilibrium shape.

to the atomic nature of the crystal structure and the gradual
transition between the crystal and the homogeneous liquid, the
shape of the crystal has to be defined with care.

We construct an indicator function for the crystal using the
value of the density at the position defined by the ideal crystal
structure which leads to a maximum value in the crystalline
phase and a minimal value in the liquid. Thus the envelope
is defined as the region where the indicator function varies.
Due to the periodicity of the crystal the crystal size does not
vary continuously within our construction. It thus contains
an uncertainty of the order of one lattice spacing, which
determines the error bars for all quantities that we extract from
the computed crystal shape. Figure 3 shows the envelope of the
computed shapes.

The extracted crystal shape shows a fully faceted structure
with sharp corners for the parameter set (5), corresponding
to the lowest temperature. With increasing temperature for
parameter sets (4)–(2) the facets remain; however the corners
become rounded with an increasing radius. For parameter set
(1), corresponding to the highest temperature, the radius of the
rounded corner is large enough to let the facet disappear and
the resulting shape is circular.

4. The transition zone and the decay of density waves
in liquid

We now turn to analysing the transition zone, between solid
and liquid. The phase field crystal model determines a diffuse
interface between solid and liquid, which has been used to
construct classical phase field models for an order parameters
φ from the phase field crystal model. The diffuse interface

width corresponds to the parameter δ in the classical phase
field energy introduced above. Our simulations however
indicate that the diffuse interface width strongly depends on
the parameter set used; see figure 4.

For parameters set (5), corresponding to the lowest
temperature, the transition zone is narrow and with increasing
temperature, parameter sets (4)–(1), the transition zone
becomes wider. Furthermore also the rate of decay of
the density waves in the liquid depends on the parameter
set. The waves decay fastest for parameter set (5) and
slowest for parameter set (1). The number density profiles
obtained are very similar to profiles computed using molecular
dynamics [15, 16].

5. Solid–liquid interfacial energy

Given the solid–liquid interfacial energy γ the equilibrium
shape of the crystal can be constructed. The shape is defined as
the shape of minimum interfacial energy under the constraint
of fixed area [17]. The interfacial energy γ = γ (θ) depends
on the local orientation θ of the interface normal, reflecting
the anisotropy of the material. According to the Wulff
theorem [18], the equilibrium shape may be constructed as
follows: draw at each point of the polar plot of γ (θ) a straight
line perpendicular to the normal direction; the inner envelope
of the resulting family of lines is geometrically similar to
the equilibrium shape. Depending on the details of γ the
equilibrium shape may contain facets and corners. Facets occur
when γ has cusps and corners occur if the stiffness γ̃ =
γ (θ) + γ ′′(θ) becomes negative for some orientations. In the
latter case it is energetically favourable to exclude high energy
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Figure 4. Density profile (left) and transition zone (right) in the direction of the corner (θ = 0 of [10] orientation) for parameter sets (1)–(5).
The envelope is only defined at the lattice (density peak) positions. In between, the envelope is defined by fitting a appropriate tanh profile.

Figure 5. Comparison of computed equilibrium shape and Wulff plot for parameter sets (1)–(5). Left: polar plot; right: detailed plot of the
normalized radius over the angle. The values for α are: (1) 0.02, (2) 0.05, (3) 0.10, (4) 0.13 and (5) 0.18.

orientations, i.e. the Wulff shape has missing orientations. For
T = 0 the equilibrium shape of crystals is assumed to be
faceted, which can be understood from simple lattice models.
As the temperature increases, these facets shrink and finally
disappear at the roughening temperature. As we only consider
two-dimensional systems, the interface is a one-dimensional
object and the roughening temperature should be zero in these
models. So at least for short range interactions the equilibrium
shape for T > 0 should be smoothly curved. However this is
not the case in our simulations. For a detailed discussion of
the thermodynamics and statistical mechanics of equilibrium
crystal shapes we refer the reader to [19].

Here we are facing the opposite situation. Given an
equilibrium shape we would like to compute the solid–liquid
interfacial energy γ , which is much less straightforward. In
particular, different γ might lead to the same equilibrium
shape. We therefore use only a generic function for γ and
adjust the parameters in order to reconstruct the computed
equilibrium shape, in particular the aspect ratio. The function
should be able to allow for cusps. In [20] a generic function is
used which adapted to our situation reads

γ (θ) = γ0

(
1 + α

∣∣∣∣cos

(
nθ

2

)∣∣∣∣
)

with α the strength of the anisotropy and n = 6 indicating the

sixfold symmetry. As long as γ̃ � 0 we obtain for the aspect
ratio

γ (0)

γ (π6 )
= 1 + α.

We therefore can compute the strength of the anisotropy as
α = γ (0)

γ ( π6 )
− 1 = r(0)

r( π6 )
− 1 and only have to measure the

radial distance r of the extracted equilibrium shape at the
two orientations 0 and π/6. Using the Wulff construction
for γ with the parameters obtained for α, we get the Wulff
shape. Figure 5 shows a comparison of the equilibrium shapes
computed using the phase field crystal method and the Wulff
shape.

Excellent agreement is achieved in the polar plot.
Differences are only visible in the detailed plot on the right
which indicates that our chosen free energy γ underestimates
the length of the facets and smooths the corners not with
a circular arc. However, due to the uncertainty in the
reconstruction of the equilibrium shape from the density profile
we will not further analyse these differences, as they are
smaller than the error bars mentioned above.

Using the analogy of the one-dimensional interface with a
step on a vicinal surface, we can also compare our results with
a step energy. In [21] a low temperature formula for the step
energy on a (111) surface with next neighbour interaction is
derived from a lattice gas on a hexagonal grid. An analytic
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a

Figure 6. Comparison of equilibrium shapes computed using the low temperature expansion of Stasevich et al [21] and the Wulff plot for
parameter sets (3)–(5). Left: polar plot; right: detailed plot of the normalized radius over the angle.

Figure 7. The line energy of the simple cusp model and the model of Stasevich et al [21] are compared. The maxima of the line energy
decrease with increasing ε. That is, the plot with the highest maximum corresponds to simulation (5).

formula valid for low temperatures and all orientation is
obtained, which reads

β(�) = β0

[
η+(�)− t

ln(3)
(s+(�)− s−(�)− s0(�))

]

and is specified in terms of normalized temperature t = T
Tc

=
kBT ln(3)

2ε with β0 = 2ε
a . ε the bonding energy, Tc the critical

temperature and a the distance of next nearest neighbours. si

and ηi are defined through η±(�) = cos(�)± sin(�)√
3

, η0(�) =
2√
3

sin(�), si (�) = ηi (�) ln(ηi (�)) for i = +, 0,−.
Figure 6 shows the comparison of this formula with the

data extracted from the PFC simulation. As indicated in [21]
the low temperature expansion is only valid to about T = Tc/8
which corresponds to our parameter sets (3)–(5). We again
obtain an excellent agreement within the possible accuracy.

Finally we compare the two models in figure 7. As long as
the stiffness is positive, the two models are very similar. Only
for a very large anisotropy do the models differ, because the
simple cusp model produces ‘ears’ in the Wulff shape.

6. Size dependence of the equilibrium shapes and
interfacial energy

The solid–liquid interfacial energy is a microscopic quantity
assuming a continuous interface. In order to reach this limit the

computational domain and the crystal size have been chosen as
large as possible to eliminate atomic effects. Our goal now is to
reduce the size of the crystal to find the smallest possible stable
equilibrium shape. We therefore start with the equilibrium
configuration discussed above and reduce mass in the liquid
phase. The relaxation of the system results in melting of the
crystal and the formation of a smaller equilibrium crystal. An
iterative process leads to the smallest possible crystal, which is
characterized by the fact that a further reduction of mass in the
system will lead to a homogeneous liquid phase. It is assumed
that the minimal crystal obtained is related to the nuclei in
homogeneous nucleation. However, our minimal crystal is
defined in the coexistence region of solid and liquid, whereas
the nuclei are typically defined in an undercooled liquid. We
observe a change in the shape of the crystal. Figure 8 shows
the obtained equilibrium shapes starting from the parameter
set (1), the circular shape for the large crystal.

The smaller the crystal gets, the more faceted the
equilibrium becomes. The strength of the anisotropy thus
becomes a function of the crystal size. A size dependence
of the solid–liquid interfacial energy has been discussed
in [22]. Here however only the magnitude of the solid–liquid
interfacial energy γ0 is considered and not its dependence on
the orientation. Analytical approaches indicate that γ0 should
be related to the surface/volume ratio with a 1/r relationship.
Thus γ0 increases for decreasing r , which is specified for
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Figure 8. Size dependence of the equilibrium shape starting from
parameter set (1).

various materials. Combined with our results, this gives an
indication of a strong relation between crystal size and solid–
liquid interfacial energy γ on a nanometre length scale.

Using continuum models on the nanoscale thus should be
considered with care and might require us to account for such
size dependence of the interfacial energy.

7. Conclusion

We have used the phase field crystal model to compute
equilibrium crystal shapes in a solid–liquid coexistence
regime. Techniques are described for extracting the
equilibrium shape from the density profile. An analytic form
for the solid–liquid interfacial energy γ , allowing for cusps, is
used to fit the equilibrium shapes using the Wulff construction.
With this approach we compute γ for various points in the
phase diagram ranging from constant functions, leading to a
circular crystal shape, to a cusped function, which leads to
a fully faceted hexagonal crystal shape. Detailed analysis of
the density field also indicates a dependence of the width of
the transition zone between crystal and liquid and the decay
of the density waves in the liquid on the position in the
phase diagram. First results on a dependence of the width of
the transition zone on orientation also indicate a sharpening
towards the facet, which is in agreement with the behaviour of
classical anisotropic phase field models (see [23]), but does not
support new concepts for dealing with anisotropic energies in
phase field models, as introduced in [24]. A detailed analysis of
the angular dependence of the transition zone will be discussed
in a forthcoming paper.
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449–530

[19] Rottman C and Wortis M 1984 Statistical mechanics of
equilibrium crystal shapes: interfacial phase diagrams and
phase transitions Phys. Rep. 103 59–79

[20] Bonzel H P and Preuss E 1995 Morphology of periodic surface
profiles below the roughening temperature: aspects of
continuum theory Surf. Sci. 336 209–24

[21] Stasevich T J, Gebremariam H, Einstein T L, Geissen M,
Steiner C and Ibach H 2005 Low-temperature orientation
dependence of step stiffness on (111) surfaces Phys. Rev. B
71 245414

[22] Jiang Q and Lu H M 2008 Size dependent interface energy and
its applications Surf. Sci. Rep. 63 427–64

[23] Kobayashi R 1993 Modeling sand numerical simulations of
dendritic crystal growth Physica D 63 410–23

[24] Torabi S, Lowengrub J, Voigt A and Wise S 2009 A new
phase-field model for strongly anisotropic systems Proc. R.
Soc. A 465 1337–59

6

http://dx.doi.org/10.1103/PhysRevLett.86.5530
http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://dx.doi.org/10.1103/PhysRevE.76.056706
http://dx.doi.org/10.1103/PhysRevB.76.184107
http://dx.doi.org/10.1103/PhysRevE.72.020601
http://dx.doi.org/10.1103/PhysRevE.74.021104
http://dx.doi.org/10.1103/PhysRevE.73.031609
http://dx.doi.org/10.1103/PhysRevB.78.184110
http://dx.doi.org/10.1103/PhysRevE.79.051404
http://dx.doi.org/10.1103/PhysRevB.75.064107
http://dx.doi.org/10.1080/09500830701481737
http://dx.doi.org/10.1007/s00791-006-0048-3
http://dx.doi.org/10.1103/PhysRevE.79.011607
http://dx.doi.org/10.1063/1.476396
http://dx.doi.org/10.1103/PhysRevB.69.174103
http://dx.doi.org/10.1016/0370-1573(84)90066-8
http://dx.doi.org/10.1016/0039-6028(95)00508-0
http://dx.doi.org/10.1103/PhysRevB.71.245414
http://dx.doi.org/10.1016/j.surfrep.2008.07.001
http://dx.doi.org/10.1016/0167-2789(93)90120-P
http://dx.doi.org/10.1098/rspa.2008.0385

	1. Introduction
	2. Phase field crystal modelling
	3. Using the phase field crystal model to compute equilibrium shapes
	4. The transition zone and the decay of density waves in liquid
	5. Solid--liquid interfacial energy
	6. Size dependence of the equilibrium shapes and interfacial energy
	7. Conclusion
	Acknowledgments
	References

